Для каждой типовой операции, предусмотренной в системе, Интернет-банкинг ведет журнал операций с указанием идентификационного номера клиента, даты и суммы совершенной операции, а также других необходимых для данной операции реквизитов. В случае необходимости, клиент может выбрать все совершенные им операции заданного типа за определенный промежуток времени. Примеры журналов операций: журнал платежных поручений; журнал поручений на покупку/продажу валюты и др.

Андронов С.А., Шамрай Я.Л., Щадилов А.Е.

Моделирование системы управления запасами с фиксированным размером заказа

(СПбГУЭФ, Санкт-Петербург)

1. Введение

Оптимизация использования товарно-материальных запасов – одна из первоочередных задач, которые ставятся перед системой управления предприятием. Такие системы обязательно включают в состав складские программы, которые, однако, не поддерживают алгоритмов контроля уровня запасов и в лучшем случае автоматизируют схемы очередности списания. Для эффективного управления запасами необходимо принимать экономически обоснованные решения о частоте и объемах поставок, детально увязывать план сбыта с планом закупок. Эту задачу решают современные системы планирования потребностей в материалах (производственного планирования потребностей в ресурсах) на базе концепции RP (requirements/resource planning). В состав таких систем микрологистики должны входить системы управления запасами (СУЗ).

Для российских предприятий характерны многочисленные отклонения в снабженческо-сбытовой деятельности, в связи с чем актуальна задача внедрения той или иной СУЗ, чтобы избегать хаотичности и неопределенности в материальном обеспечении производственного, снабженческого или сбытового процесса. Для этого в первую очередь необходимы конкретные методики проектирования логистических систем управления запасами. Помочь в создании таких методик должны разработки соответствующих программных средств подобно тому, как в свое время происходило внедрение автоматизированных систем бухучета и управленческого учета.

Этап моделирования является одним из важнейших и обязательных этапов при проектировании реальных СУЗ. В связи с этим разработка

средств моделирования как начальной фазы при автоматизации проектирования СУЗ представляется для России весьма актуальной.

В рассматриваемой задаче предметом исследования является процесс формирования и изменения уровня запасов материальных ресурсов, а конечной целью – создание алгоритмов и программного обеспечения для моделирования СУЗ. Сделана попытка автоматизировать начальный этап проектирования СУЗ в части моделирования основных типов СУЗ, а именно: систем с фиксированным уровнем заказа, с фиксированным интервалом времени между заказами, с установленной периодичностью пополнения запасов до установленного уровня и систем «минимум – максимум» [1].

2. Основы моделирования СУЗ

Обобщенная блок-схема СУЗ представлена на рис.1.

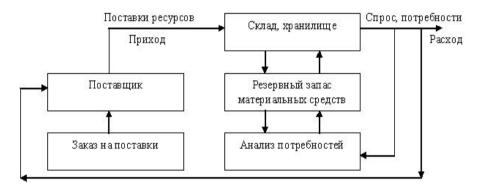


Рис. 1. Система управления запасами

Разнообразие математических моделей СУЗ помимо типов систем контроля таких систем и, соответственно, заложенных в них алгоритмов, определяется также характером спроса (детерминированный, стохастический). В последнем случае, в частности, может быть учтена нестационарность спроса, проявляющаяся в виде сезонных процессов. При построении модели СУЗ помимо спроса учитываются и такие факторы, как запаздывание или ускорение поставок, характер пополнения запаса (мгновенно или, например, по линейному закону) и т.д.

3. Программная реализация моделей СУЗ

При создании компонента MyLogisticPro1 [2] были реализованы модели для следующих типов СУ3:

- Система с фиксированным размером заказа (ФРЗ).
- Система с фиксированным интервалом времени между заказами (ФИВМЗ).

- Система с установленной периодичностью пополнения запасов до установленного уровня (УППЗУУ).
- Система минимум-максимум (МИН-МАКС).

Каждая из этих систем реализует свою стратегию управления запасами.

Логика работы СУЗ достаточно полно представлена в литературе [1] через различные варианты расчетных схем. Все системы в том или ином виде используют формулу Вильсона для определения оптимального размера заказа при пополнении запасов:

$$Q_0 = \sqrt{\frac{2AS}{I}},$$

где Q_0 — оптимальный размер заказа, шт.; A — затраты на поставку единицы заказываемого продукта, руб.; S — потребность в заказываемом продукте, шт.; I — затраты на хранение единицы заказываемого продукта, руб./шт.

В созданной системе под возмущением какого-либо параметра понимается ежедневное отклонение параметра от ожидаемого значения в пределах 100% в обе стороны. Возмущение параметра может быть активным (только тогда оно включается в расчет), а также случайным в пределах заданного диапазона значений.

Используются следующие виды ограничений по учету затрат и убытков:

- 1. Затраты на стоимость выполнения и содержание запаса задаются отдельно для каждого комплектующего, а не рассчитываются из статей затрат. В общем случае учет затрат на хранение и оформление заказа осуществляется прямым подсчетом, поскольку они не постоянны и зависят от величины размера заказа (например, скидки на размер партии, на весь объем). Расчет затрат, таким образом, является самостоятельной задачей и должен быть реализован в последующих версиях СУЗ.
- 2. При учете убытков от неудовлетворенного спроса (когда есть дефицит) вид используемых формул для оптимального заказа усложняется. Такое изменение в учете убытков предполагается реализовать в последующих версиях программы.

Все входные данные должны быть взаимосогласованы между собой. Это необходимо для того, чтобы значение заказа комплектующих изделия указывалось в целых единицах и было кратно количеству отдельных компонентов в составе всего изделия.

Разработанное программное обеспечение предоставляет пользователю удобный графический интерфейс для ввода необходимых данных и получения результатов (рис. 2).

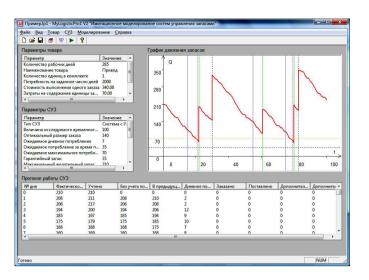


Рис. 2. Вид интерфейса программы

При осуществлении вычислительного эксперимента имеется возможность настройки системы. В частности, помимо типа СУЗ (рис. 3) пользователь может выбрать модель внешнего воздействия на систему:

- Отсутствие отклонений параметров системы от ожидаемых (предварительно рассчитанных) значений.
- Задержки поставок по заказам (величина задержек по времени определяется пользователем).
- Возмущения группы параметров системы таких, как, например, время поставки, интенсивность потребления и т.п. (отклонения в обе стороны равновероятны, а их величина может быть определена пользователем, либо изменяться в пределах заданного значения по равномерному закону распределения).

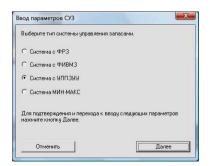


Рис. 3. Элемент настройки программы

Результаты эксперимента представляются пользователю в табличном и графическом виде. Приложение обеспечивает работу с файлами данных для протоколирования полученных результатов.

Программный компонент MyLogisticPro1 функционирует под управлением операционных систем семейства Microsoft Windows. Пользователь может подробнее ознакомится с работой компонента по встроенной справке, выполненной в качестве Web-документа, отображаемого в браузере Internet Explorer.

Возможно дальнейшее развитие программного продукта: расширение набора моделей СУЗ, совершенствование каждой отдельной модели и средств настройки.

4. Контрольный пример

Для проверки работы системы моделирования был разработан контрольный пример. Рассмотрен случай поставки сборочного изделия – гидромотора. Решалась задача поставки ряда комплектующих при наличии одного и нескольких сбоев (задержки поставок). Необходимо было оценить время возврата системы в нормальное состояние с наличием полного объема гарантированного запаса. Для случая многократных сбоев необходимо было определить максимальное количество сбоев и максимальный срок неоднократной задержки поставки, которые может выдержать система без выхода в бездефицитное состояние (под дефицитом понимается полное отсутствие запаса).

Исходные данные по комплектующим для сборки гидромоторов приведены в табл. 1.

 $\label{eq:2.2} \ensuremath{\text{\fontformula}}$ Поставка комплектующих изделий для сборки гидромоторов

Наимено- вание	Кол-во, шт.	Цена, руб./шт.	Интервал времени между поставками, дни	Время постав- ки, дни	Возможная задержка поставки, дни	Годовая потреб- ность, шт.
Привод тахометра	1	1000	30	5	5	2000
Крышка	2	155	30	5	5	4000
Шатун	1	50	30	5	5	2000
Золотник	1	150	30	5	5	2000

Числовые данные для контрольного примера: значение A в контрольном примере принимается равным 25% от цены комплектующих изделий;

значение S принимается по данным табл. 1, значение I в примере принимаются равным 5% от цены комплектующих изделий.

Результаты расчета в соответствии с приведенным в [1] алгоритмом представлены в табл. 2.

Таблица 2 Рассчитанные параметры системы с ФРЗ

Показатель	Единица	Комплектующие				
Показатель	измерения	1	2	3	4	
Потребность	шт.	2000	4000	2000	2000	
Оптимальный размер заказа	шт.	141	200	141	141	
Время поставки	дни	5	5	5	5	
Возможная задержка в поставках	дни	5	5	5	5	
Ожидаемое дневное потребление	шт./дни	7	14	7	7	
Срок расходования заказа	дни	20	14	20	20	
Ожидаемое потребление за время поставки	шт.	35	70	35	35	
Максимальное потребление за время поставки	шт.	70	140	70	70	
Гарантийный запас	шт.	35	60	35	35	
Пороговый уровень запаса	шт.	70	140	70	70	
Максимальный желательный запас	шт.	176	270	176	176	
Срок расходования запаса до порогового уровня	дни	15	9	15	15	

На рис 4. представлены результаты расчета для исходных данных со случайными отклонениями по времени поставки.

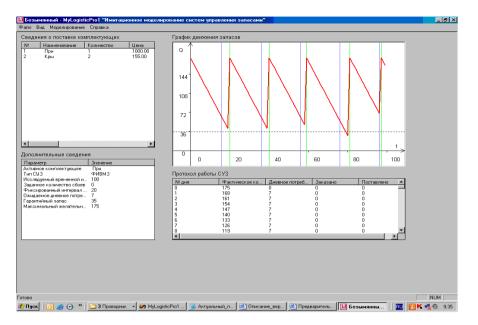


Рис. 4. Динамика процесса с возмущениями по времени поставки

5. Моделирование СУЗ в среде Anylogic 6

Моделирование СУЗ возможно также и универсальными средствами, например – с применением пакетов имитационного моделирования.

В качестве иллюстрации приведем пример модели СУЗ в среде отечественной системы AnyLogic [3] — универсального инструмента для многоподходного моделирования дискретных, непрерывных и гибридных систем. Многоподходность системы — это уникальная возможность применения системно-динамического подхода, дискретно-событийного и агентного метода моделирования, а также возможность их совместного использования. Открытость системы обусловливается встроенной возможностью программирования на языке Java.

На рис. 5 представлены результаты исследования системы с Установленной Периодичностью Пополнения Запасов до Установленного Уровня (УППЗУУ) в соответствии с ее алгоритмом работы [1] при наличии возмущений.

Иллюстрация демонстрирует ускорения и задержки поставки. В УП-ПЗУУ в качестве возмущения для товара № 4 вместо фиксированных ошибок в задержке или ускорении поставки взята величина с треугольным распределением (применяется в условиях ограниченных знаний: известен минимум, максимум и наиболее частое значение) интервалов поставки.

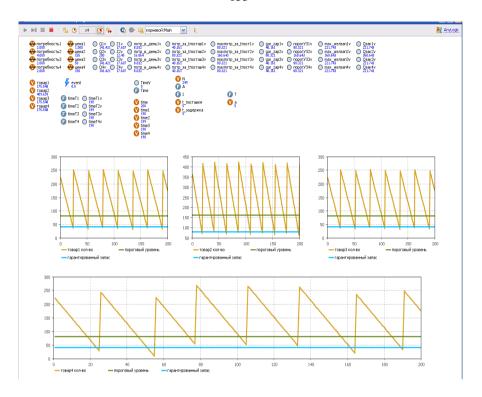


Рис. 5. Учет возмущений при моделировании СУЗ

Разработанное программное обеспечение может быть использовано для исследования реальных СУЗ, соответствующих всем вышеуказанным стратегиям их работы.

Литература

- 1. Логистика: учебное пособие / под ред. Б.А. Аникина. М.: ИНФРА-М, 1997. 327 с.
- 2. Андронов С.А., Шамрай Я.Л. MyLogisticPro1 программное обеспечение для систем управления запасами. Системный анализ и логистика // Научный вестник кафедры системного анализа и логистики СПбГУАП. Вып. 4.-2010.-15 окт. С. 6-7.
 - 3. http://www.xjtek.ru/anylogic